
2. Reworking and Recoding Data

Often when working on a project you will have a data set that will contain additional information that you
don’t need for your analysis; or, have attributes which aren’t specified as you require. This helpsheet explains
how to remove and add additional attributes.

For example, let’s say we have a data set as follows:

Name Age Place School Degree

John 20 Liverpool Hillside High School Geography BA (Hons)

Rachel 21 Norwich Colman High School Geography & Archaeology BA (Joint Hons)

.

And we are only interested in people’s age for this exercise. As such, we don’t need all of the other data.

Before we start, we need to setup the working directory and read in the data:

For more information on working directories, see the worksheet ‘1. R Basics’. Remember
to create the folder R work if it doesn’t exist already.

Set working directory
setwd("M:/R work")
Read data from the web
data <- read.csv("http://data.alex-singleton.com/r-helpsheets/2/example.csv", header = TRUE)

We will now display this to check it has been read in correctly:

data

Which should give you this:

Name Age Place School Degree
1 John 20 Liverpool Hillside High School Geography BA (Hons)
2 Rachel 21 Norwich Colman High School Geography & Archaeology BA (Joint Hons)
3 Helen 34 Liverpool Hillside High School Geography BA (Hons)
4 Mia 20 Liverpool Central High School Geography BA (Hons)
5 Carl 26 Exeter Central High School Geography BSc (Hons)
6 Kerryn 21 Exeter Central High School Geography BSc (Hons)

The subset command can be used to extract just the specified columns (and/or rows) from the data set. For
example:

subset(data, select = c("Name", "Age"))

subset(data, Place == "Liverpool", select = c("Name", "Age"))

We can also store this as a new object:

data.Liverpool <- subset(data, Place == "Liverpool", select = c("Name", "Age"))

1

Because the statement assigns the output of the subset function to the new object called "data.Liverpool",
nothing will be printed. As such, we can check by typing data.Liverpool:

Name Age
1 John 20
3 Helen 34
4 Mia 20

Adding a column to a data frame is done using the $ symbol. We will initially store NA (i.e. no value) in the
column.

data.Liverpool$diff100 <- NA

We also use the same principle to calculate the age difference from 100

data.Liverpool$diff100 <- 100 - data.Liverpool$Age

Perhaps we decide that we don’t like the label of the first column “Name” and that it would be more appropriate
to call it “FirstName”. To make this change we create a variable with the column labels that we want:

new_column_names <- c("FirstName", "Age", "diff100")

When doing this it is always a good idea to check that the length of the object we have just created (it should
be 3) is the same as the number of columns in our data frame.

length(new_column_names)

ncol(data.Liverpool)

We can then add the new column names to the data frame:

colnames(data.Liverpool) <- new_column_names

Check the data frame now, and the names should be changed.

FirstName Age diff100
1 John 20 80
3 Helen 34 66
4 Mia 20 80

Instead of recording people’s age in years, perhaps we just need this in two categories - 21 and over, and
under 21. We can recode the Age variable into a new variable as follows:

data.Liverpool$AgeCat[data.Liverpool$Age < 21] <- "Under 21"
data.Liverpool$AgeCat[data.Liverpool$Age >= 21] <- "21 or over"

This will create the new variable, AgeCat. To see what has happened to the object, print the data.Liverpool
again:

FirstName Age diff100 AgeCat
1 John 20 80 Under 21
3 Helen 34 66 21 or over
4 Mia 20 80 Under 21

2

	2. Reworking and Recoding Data

